
2020-10-02

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Protecting pointers

2
Protecting pointers

Outline

• In this lesson, we will:

– Understand how to protect pointers using const

3
Protecting pointers

Revisiting pointers

• A variable may be changed either directly or by changing what is at
the corresponding address:

int main() {

 int x{42};

 int *p_x{&x};

 std::cout << *p_x << " == " << x << std::endl;

 // We can change the value of 'x' via 'p_x'

 *p_x = 91;

 std::cout << *p_x << " == " << x << std::endl;

 return 0;

}

Output:
 42 == 42
 91 == 91

4
Protecting pointers

Revisiting const

• A variable declared const cannot be reassigned:

int main() {

 int m{42};

 int const n{91};

 ++m;

 std::cout << "m == " << m << std::endl;

 ++n;

 std::cout << "n == " << n << std::endl;

 return 0;

}
Output:
 example.cpp: In function ‘int main()’:
 example.cpp:11:7: error: increment of read-only variable ‘n’

 ++n;
 ^

2020-10-02

2

5
Protecting pointers

Disallow changes to value of variable

int main() {

 int x{42};

 int y{33};

 // READ: Pointer to constant integer.

 int const *p_x{&x};

 // DISALLOWED: Change value of variable x via p_x.

 std::cout << *p_x << " : " << x << std::endl;

 *p_x = 22;

 std::cout << *p_x << " : " << x << std::endl;

 return 0;

}

Output:
pointer-const.cpp: In function ‘int main()’:
pointer-const.cpp:14:10: error: assignment of read-only location ‘* p_x’
 *p_x = 22;

6
Protecting pointers

Disallow changes to address held in pointer

int main() {

 int x{42};

 int y{33};

 // READ: Constant pointer to integer.

 int *const p_x{&x};

 // DISALLOWED: Change the address held in p_x.

 std::cout << p_x << " : " << &x << std::endl;

 p_x = &y;

 std::cout << p_x << " : " << &y << std::endl;

 return 0;

}

Output:
pointer-const.cpp: In function ‘int main()’:
pointer-const.cpp:13:9: error: assignment of read-only variable ‘p_x’
 p_x = &y;
 ^

7
Protecting pointers

Disallow changes to address held in pointer
and value of variable

int main() {

 int x{42};
 int y{33};

 // READ: Constant pointer to constant integer.
 int const *const p_x{&x};

 // DISALLOWED: Change the address held in p_x.
 std::cout << p_x << " : " << &x << std::endl;
 p_x = &y;
 std::cout << p_x << " : " << &y << std::endl;

 // DISALLOWED: Change the value of variable pointed to by p_x.
 std::cout << p_x << " : " << &x << std::endl;
 *p_x = 22;
 std::cout << p_x << " : " << &x << std::endl;

 return 0;
}

Output:
pointer-const.cpp:13:9: error: assignment of read-only variable ‘p_x’
 p_x = &y;
 ^
pointer-const.cpp:18:9: error: assignment of read-only location ‘* p_x’
 *p_x = 22;

8
Protecting pointers

Reading these declarations

• Read the declaration

 int const *p_x{ … };

 as saying “what is at the address p_x is constant”

• Read the declaration

 int *const p_x{ … };

 as saying “the pointer p_x is constant”

• Finally, read the declaration

 int const *const p_x{ … };

 as saying “the pointer p_x and what is at

 that address are both constant”

2020-10-02

3

9
Protecting pointers

Addresses of constants

• This is necessary if you assign a pointer the address of a constant:

int main() {

 int const N{42};

 int *p_N{ &N };

 // This is not allowed: you cannot assign to 'N'

 // N = 91;

 // Try assigning to 'N' indirectly

 *p_N = 91;

 return 0;

}

example.cpp: In function ‘int main()’:
example.cpp:3:15: error: invalid conversion from ‘const int*’ to ‘int*’
 int *p_N{ &n };
 ^~

10
Protecting pointers

Addresses of constants

• You must declare the value of the point to be a constant

int main() {

 int const N{42};

 int const *p_N{ &N };

 // Neither of these are allowed

 // N = 91;

 // *p_N = 91;

 std::cout << *p_N << std::endl;

 return 0;

} Output:
 42

11
Protecting pointers

Summary

• Following this lesson, you now

– Understand how to protect pointers

12
Protecting pointers

References

[1] No references?

2020-10-02

4

13
Protecting pointers

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

14
Protecting pointers

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

